230735 – HIGH-LEVEL DIGITAL DESIGN

Credits: 5 ECTS

LECTURER

Coordinating lecturer: Juan Manuel Moreno Aróstegui

Others: Jordi Madrenas Boadas

PRIOR SKILLS

- Digital design based on an RTL-level hardware description language (VHDL, Verilog, ...)
- Design and simulation of basic digital systems: combinational and sequential logic functions, arithmetic functions and finite state machines.
- Implementation and debugging of basic digital systems on configurable devices (FPGAs).
- Development of software applications based on a microprocessor/microcontroller.
- C programming language.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

- Analyze, design and implement hardware/software communication interfaces.
- Specify and develop information processing systems using hardware/software co-design techniques.
- Design and implement digital systems based on embedded systems (SOC) configurable with high-level description languages and CAE tools.

Transversal:

TEAMWORK. Being able to work as a member of an interdisciplinary team, either as a member or carrying out management tasks, in order to contribute to developing projects with pragmatism and a sense of responsibility, assuming commitments taking into account the available resources.

TEACHING METHODOLOGY

- Lectures
- Laboratory classes
- Laboratory practical work
- Individual work (distance)
- Extended answer test (Final Exam)
LEARNING OBJECTIVES OF THE SUBJECT

Learning results of the subject:

- Understand the implications of hardware/software co-design and the use of configurable integrated systems (SOC).
- Design and implement communication interfaces between programmable subsystems (microprocessor/microcontroller) and configurable subsystems (FPGAs).
- Understand the high-level design principles of digital systems based on programmable and configurable components.
- Design and implement, using high-level design languages and techniques, digital communication and information processing systems.

STUDY LOAD

Hours large group: 26
Hours small group: 13
Hours self study: 86

CONTENTS

1. Introduction
 1.1. Principles of hardware/software codesign
 1.2. High-level synthesis methodology
 1.3. Design optimization principles
 1.4. High-level hardware description languages
 1.5. Architectures of configurable integrated systems

 Full-or-part-time: 4 h.
 Theory classes: 2 h.
 Self study: 2 h.

2. High-level hardware description languages
 2.1. SystemC hardware description language
 2.1.1. Functional modeling
 2.1.2. Interfaces and channels design
 2.1.3. Transaction-level modeling
 2.1.4. Verification and debugging
 2.2. SystemVerilog hardware description language
 2.2.1. Data types
 2.2.2. Procedural blocks, tasks and functions
 2.2.3. Interfaces
 2.2.4. System verification primitives
 2.2.5. Object-oriented programming
 2.2.6. Threads and inter-process communication

 Full-or-part-time: 15 h.
 Theory classes: 6 h.
 Self study: 9h.
3. High-level digital synthesis
 3.1. Bit accurate data types
 3.2. Data flow graph analysis
 3.3. Resource allocation
 3.4. Scheduling
 3.5. Loop unrolling

 \textbf{Full-or-part-time:} 12 h.
 \textbf{Theory classes:} 6 h.
 \textbf{Self study:} 9h.

4. Hardware/software interfaces
 4.1. Principles of hardware/software communication
 4.2. On-chip buses
 4.3. Microprocessor interfaces
 4.4. Hardware interfaces

 \textbf{Full-or-part-time:} 22 h.
 \textbf{Theory classes:} 2h.
 \textbf{Self study:} 20 h.

5. Design of custom processing subsystems
 5.1. Video subsystems
 5.2. Vector and matrix multiplication
 5.3. Sorting algorithms

 \textbf{Full-or-part-time:} 22 h.
 \textbf{Theory classes:} 2h.
 \textbf{Self study:} 20 h.

\textbf{Laboratory:}

- Configuration of a 32-bit microprocessor IP on an FPGA
- Design of custom communication and information processing subsystems
- Co-simulation and system integration

 \textbf{Full-or-part-time:} 39 h.
 \textbf{Laboratory classes:} 13 h.
 \textbf{Self study:} 26 h.

\textbf{GRADING SYSTEM}

- Final exam: 40 %
- Collective works: 20 %
- Laboratory sessions: 40 %

\textbf{BIBLIOGRAPHY}

\textbf{Basic:}

Complementary:
